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Abstract

In this technical note, we describe the Markov-switching model with heterogeneous recessions

and expansions used to construct the economic weakness index for Switzerland. Given the

non-linearities embedded in the model, we rely on Bayesian methods similar to Leiva-Leon

et al. (2023) to solve the model. Estimated recession probabilities at cantonal level are then

aggregated to obtain the economic weakness index for Switzerland.

*I would like to thank Marco Soto Novoa and Flavio Calvo for their valuable comments and suggestions.
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1 A Markov-Switching Model with Heterogeneous Recessions and

Expansions

1.1 The Model

In each time period t = 1, ..., T , business cycle in canton c denoted by bc,t can be either in a

regime of recession (Sc,t = 1) or expansion (Sc,t = 0). The τ1;c-th (τ0;c-th) cantonal recessionary

(expansionary) episode is denoted by τ1;c = 1, ..., N1;c (τ0;c = 1, ..., N0;c). We suppose that the

dynamics of the business cycle is governed by the following Markov-switching model:

bc,t = (1− Sc,t)µ0,τ0;c + Stµ1,τ1;c + ec,t (1)

where ec,t ∼ i.i.dN(0, σ2
e;c). The latent regime Sc,t ∈ {0, 1} is assumed to follow a first-order

Markov-switching process with the following transition probabilities:

Pr(Sc,t = 1|Sc,t−1 = 1) = pc (2)

Pr(Sc,t = 0|Sc,t−1 = 0) = qc (3)

This model follows Eo and Kim (2016) except that we assume as in Baumeister et al. (2022) that

each episode is characterized by a specific mean that follows an iid Gaussian process:

µ1,τ1;c ∼ i.i.dN(µ1,τ1;c , σ
2
1,τ1;c) (4)

µ0,τ0;c ∼ i.i.dN(µ0,τ0;c , σ
2
0,τ0;c) (5)

The assumption allows means associated to recessionary and expansionary episodes to change

very quickly in the presence of big shocks such as the Covid-19 shock. Given the non-linearities

embedded in the model, we rely on Bayesian methods similar to Leiva-Leon et al. (2023) to estimate

the model.

1.2 The Algorithm to Solve the Model

To ease notation, we drop cantonal index c. Let Y = {bt}Tt=1 contain all the available data on

the cantonal business cycle index (BCI). Let S = {St}Tt=1 be the collection of the latent regimes,

and let µ = {µ0,t, µ1,t}Tt=1 contain the information on the regime-dependent means associated with

recessionary and expansionary episodes. All the model parameters are collected in θ = {σ2
e , p, q}.

Given data Y and prior distribution for θ, we rely on the Gibbs sampler to generate a sample of

draws {S(j), µ(j), θ(j)}Jj=1 that represents the posterior density p(S, µ, θ|Y ). The following iterative

procedure is used to generate the j-th draw:

Step 1. Draw S(j) from the density p(S(j)|µ(j−1), θ(j−1), Y ) by using the simulation smoother

proposed in Kim et al. (1999) that entails 2 steps.
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Step 1.1. First, we compute Pt(St = 1) ≡ Pr(St = 1|Yt) that denotes the probability of being in

a recession conditional on time-t available data Yt = {bt}tt=1:

Pt(St = 1) =
Pr(St = 1, bt, Yt−1)

Pr(bt, Yt−1)

=
Pr(bt|St = 1, Yt−1)Pr(St = 1|Yt−1)

Pr(bt|Yt−1)

=
Pr(bt|St = 1)Pr(St = 1|Yt−1)

Pr(bt|St = 1)Pr(St = 1|Yt−1) + Pr(bt|St = 0)Pr(St = 0|Yt−1)

=

ϕ

(
bt−µ1,τ1

σ2
1,τ1

)
Pt−1(St = 1)

ϕ

(
bt−µ1,τ1

σ2
1,τ1

)
Pt−1(St = 1) + ϕ

(
bt−µ0,τ0

σ2
0,τ0

)
Pt−1(St = 0)

(6)

where ϕ(·) is the Gaussian probability density function. The probability of being in recession at

time t conditional on Yt−1 is given by:

Pt−1(St = 1) = Pr(St−1 = 1|Yt−1)Pr(St = 1|St−1 = 1) + Pr(St−1 = 0|Yt−1)Pr(St = 1|St−1 = 0)

= Pt−1(St−1 = 1)× p+ Pt−1(St−1 = 0)× (1− q)

We compute Pt(St = 1) from t = 1 to T . We start the sequence with P0(S1 = 1) being equal to

its steady-state value.1

Step 1.2. Second, we compute PT (St = 1) ≡ Pr(St = 1|YT ). To do so, we start the sequence by

drawing ST from PT (ST = 1) given by (6). Then, given ST , we draw ST−1 from the distribution

Pr(ST−1|ST , YT−1). By repeating the process backwards for t = T − 2, ..., 1, we have that PT (St =

1) = Pr(St = 1|St+1, Yt). The posterior distribution for the recessionary state is given by:

Pr(St = 1|St+1, Yt) =
Pr(St+1, St = 1, Yt)

Pr(St+1, Yt)

=
Pr(St+1|St = 1, Yt)Pr(St = 1|Yt)

Pr(St+1|Yt)

=
Pr(St+1|St = 1)Pr(St = 1|Yt)

Pr(St = 1|Yt)Pr(St+1|St = 1) + Pr(St = 0|Yt)Pr(St+1|St = 0)

=
Pr(St+1|St = 1)Pt(St = 1)

Pt(St = 1)Pr(St+1|St = 1) + Pt(St = 0)Pr(St+1|St = 0)

1The steady-state value of the unconditional probability distribution of St = 1 is equal to Pt−1(Sss = 1) =
1−q

1−[p−(1−q)]
.
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Thus, given St+1, we draw St from:

Pr(St = 1|St+1 = 1, Yt) =
p× Pt(St = 1)

Pt(St = 1)× p+ Pt(St = 0)× (1− q)

Pr(St = 1|St+1 = 0, Yt) =
(1− p)× Pt(St = 1)

Pt(St = 1)× (1− p) + Pt(St = 0)× q

Step 2. Draw µ(j) from the density p(µ(j)|S(j), θ(j−1), Y ). Given S(j), we partition the sample into

expansionary episodes τ0 = 1, ..., N0 and recessionary episodes τ1 = 1, ..., N1. For each individual

epsiode τκ of length Tτκ (κ = {0, 1}), we simulate the specific mean µκ,τκ from the posterior density

N(µκ,τκ , σ
2
κ,τκ) derived from the combination of the the normal prior distribution N(aκ, bκ) with

the likelihood function, where :

σ2
κ,τκ =

(
1

bκ
+

Tτκ

σ2
e

)−1

(7)

µκ,τκ = σ2
κ,τκ

(
aκ
bκ

+

∑
t∈τκ bt

σ2
e

)
(8)

Step 3. Draw θ(j) from the density p(θ(j)|S(j), µ(j), Y ) using the standard Gibbs sampling tech-

niques.

Step 3.1. First, assuming a prior inverse-gamma distribution for σ2
e ∼ IG(a, b), simulate σ2

e from

the posterior density that is also an inverse-gamma IG(a, b) with:

a = a+
1

2
T (9)

b =

(
b+

1

2

T∑
t=1

e2t

)−1

(10)

where et = bt − E(bt) and E(bt) = (1− St)µ0,τ0 + Stµ1,τ1 .

Step 3.2. Second, we assume a prior beta distribution β(a, b) for both p and q. We draw p from

the beta posterior density β(a1, b1), where a1 = a + n11 and b1 = b + n10. n11 is the number of

periods that the economy remains in recession from t− 1 to t, while n10 is the number of periods

that the economy switches from a recession to an expansion. Similarly, we draw q from the beta

posterior density β(a0, b0), where a0 = a+ n00 and b0 = b+ n01.

Initial values and hyper-parameters of prior distributions. We select 12’000 draws. We

drop the first 2’000 draws and keep the 10’000 remaining draws. We start the Gibbs sampler with

p = 0.8 and q = 0.9. The initial values for the time series of the latent regime is equal to one if the

trend of the BCI estimated with the HP filter is below zero. The initial values for the time series

4



of the state-dependent mean are equal to prior mean (i.e. 1 for expansion and −1 for recession).

The variance of the shock to the BCI is set to the prior variance of the state-dependent mean (i.e.

σe
2 = 0). The hyper-parameters associated with the prior distributions are reported in Table B1.

Table B1: Details of the prior distributions

Parameter Meaning Distribution a b

µ0,τ0 Mean during expansion N(a, b) 1 0.1

µ1,τ1 Mean during recession N(a, b) -1 0.1

σe
2 Variance of shock to the BCI IG(a, b) 3 1×(a− 1)

p Probability of staying in an expansion β(a, b) 9 1

q Probability of staying in a recession β(a, b) 8 2

Notes: The table reports the hyper-parameters associated with the prior distributions employed in the

estimation algorithm.

2 The CREA Swiss Weekness Index

2.1 The Index

Since the models are estimated in a Bayesian fashion, we can generate many replications associated

with the realization of recessionary episodes for each canton, that is, S
(j)
c,t for c = 1, ..., C and

j = 1, ..., J , where C = 26 is the number of Swiss cantons and J = 10′000 is the number of retained

draws. Consequently, the j-th replication of the SWI at time t is given by:

SWI
(j)
t =

C∑
c=1

ωc,tS
(j)
c,t (11)

where ωc,t ∈ [0, 1] denotes the time-varying weight for each Swiss canton. These weights are

based on the evolving economic size of each canton relative to national real GDP. The time-t Swiss

Weekness Index is given by the median of the simulated density {SWI
(j)
t }Jj=1.

2.2 Recession Probabilities at the Cantonal Level

The time-t recession probability in canton c is given by:

Pr(Sc,t = 1) =
1

J

J∑
j=1

S
(j)
c,t (12)
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